A,B,C are the angles of a △ABC.
Therefore, A+B+C=180°
Given, cosA+2cosB+cosC=2
cosA+cosC=2(1−cosB)
2cos(A+C)/2.cos(A-C)/2=2.2sin²B/2
2.sinB/2.cos(A-C)/2=2.2sin²B/2
[ since,cos(A+C)/2=cos(180°-B)/2= sinB/2 ]
cos(A-C)/2=2sinB/2
Multiplying both sides by 2cosB/2
cos(A-C)/2*2cosB/2 =2sinB/2 *2cosB/2
[ since,sin(A+C)/2=sin(180°-B)/2= cosB/2 ]
[cos(A-C)/2]*[2sin(A+C)/2] =2sinB/2 *2cosB/2
2*[cos(A-C)/2]*[sin(A+C)/2] =2sinB
2*[sin(A+C)/2]*[cos(A-C)/2] =2sinB
sinA+sinC=2sinB
a+c=2b